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Abstract 
 
 We present a new methodology for studying speech rhythm, based upon low-frequency 
Fourier analysis of the amplitude envelope of bandpass-filtered speech. Rather than quantifying 
rhythm with time-domain measurements of interval durations, we use frequency-domain 
representations to characterize speech rhythm with a metric based on a rhythm spectrum. In this 
paper we describe our method in detail, and using the Buckeye corpus, we illustrate and discuss 
approaches to characterizing rhythm with low-frequency spectral information. 
 
1. Introduction  
 

Most studies of speech rhythm use interval durations to describe temporal patterns. 
Defining an interval duration requires the selection of endpoints, which are moments in time. A 
variety of rationales exist for how to choose relevant moments, and these rationales depend upon 
what information in the acoustic signal is considered most appropriate for identifying rhythmic 
patterns. A guiding principle in the selection of moments is to define intervals that are 
psychologically important, i.e. subject to cognitive control or perceptually relevant.  

One of the most prevalent uses of interval durations is found in cross-linguistic studies of 
speech rhythm, which have generally been concerned with the hypothesis that languages belong 
to distinct rhythmic classes of stress-timed, syllable-timed, and mora-timed languages (Pike 
1945; Abercrombie 1967). This hypothesis holds that speakers of a given language organize their 
utterances so as to produce relatively isochronous intervals between either stressed-syllables, 
syllables, or morae. If true, evidence of such timing should be found in a tendency toward 
isochrony of intervals. In other words, the durations from the onset of one unit to the next should 
be less variable for timed intervals than for intervals not used to organize speech. For example, in 
a stress-timed language, interval durations between stressed syllables should be substantially less 
variable than those between syllables or morae. In a syllable-timed language, inter-syllable 
durations should be relatively less variable than inter-moraic and inter-stress interval durations. 
Consequently, the durations of inter-stress intervals in a stress-timed language should not be 
highly correlated with the number of syllables contained in those intervals; likewise, in a 
syllable-timed language the durations of syllables should not be highly correlated with the 
number of morae in the syllables. 

Research into these predictions has failed to reveal a greater degree of syllable and stress-
interval isochrony in syllable-timed and stress-timed languages, respectively. Bolinger (1965) 
and later on Dauer (1983) found that interstress interval durations in English were proportional to 
the number of syllables contained therein and varied according to their constituent syllable 
shapes. Furthermore, Roach (1982) found similar syllable durations in several languages that are 
purportedly stress-timed and several that are purportedly syllable-timed. 

One reason that attempts to identify isochronies have not been successful may be, as 
Lehiste (1979) suggested, that isochrony is perceptual in nature. Perhaps a cyclic rhythm is 
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perceptually imposed on only vaguely isochronous productions. Hence relative isochrony would 
not necessarily be observed in speech interval durations. Along these lines, the perceptual system 
may compensate for rhythmic perturbations due to factors such as syllable shape or number of 
syllables in a foot. Just as perceptual mechanisms correct for contextual variation in the signal 
due to the overlap of articulations, so might rhythmic variation due to these factors be corrected, 
leading to the perception of isochrony not present in the acoustic signal itself. 

A different interpretation of the failure to identify rhythmic classes with interval 
measures is that the choice of salient moments used in these studies did not define the intervals 
most appropriate for uncovering patterns of isochrony. That is, the intervals between onsets of 
syllables or onsets of stressed-syllables do not correspond to consciously controlled or 
perceptually relevant durations, and thus do not reveal a cross-linguistic pattern that correlates 
with perceived rhythmic differences between languages. 

There are other reasonable possibilities for the choice of moments to define cognitively 
important intervals. One is the beginning of a syllable vowel nucleus, another is the amplitude 
peak associated with a syllable, yet another is the center of integrated amplitude (analogous to a 
center of gravity). A more complicated but more cognitively-motivated construct is the “p-
center” of a syllable. This concept arose from finger tap alignment studies by Allen (1972, 
1975), in which subjects tapped their index finger along with stressed syllables. Allen found that 
subjects tapped their fingers somewhere close to vowel onsets, and he called the temporal 
location of the finger tap the “production-center” of a syllable. The concept was then refined 
using a dynamic rhythm setting task, in which the timing of a syllable relative to reference beats 
is manipulated with a knob. These experiments have shown that a perceptually salient center of a 
syllable also exists near the vowel onset (Morton, Marcus, & Frankish 1976), and that the exact 
location of the center is influenced by the presence and duration of onset and coda clusters.  

These findings have led a number of researchers to attempt to develop algorithms to 
approximate p-centers from acoustic signals. Howell (1988) used the amplitude 
envelope of a syllable to predict the location of its p-center. Pompino-Marschall (1989) used a 
gammatone filterbank (which approximates auditory nerve responses) and a nonlinear function 
of energy events defined by thresholds in syllable constituents; Scott (1993) used the energy in a 
specific band of the spectrum, and Cummins and Port (1998) used a variation on this method 
where the band was 700-1300 Hz—this frequency-band is useful in identifying energy associated 
with vowels and filtering out energy associated with obstruents.  
 An alternative reason why convincing evidence for isochrony has not been found could 
be that rhythmic differences between languages do not arise from isochrony whatsoever. As 
Dauer (1987) has argued, there may be no way to choose consistent points in time to define 
intervals that are relatively isochronous. In other words, the hypothesis that languages fall into 
distinct rhythm classes, based upon which prosodic units tend to be isochronous, could just be 
plain wrong. In that case, our impressions of cross-linguistic rhythmic differences could arise 
from perceptual attention to a different sort of acoustic information.  
 One intriguing approach along these lines is to attribute perceived rhythmic differences to 
phonological characteristics of languages. Dauer (1983) observed that stress-timed languages 
tend to have more syllable types and heavier syllables, along with weight-sensitive stress; 
additionally, stress-timed language have greater vowel reduction in weak syllables. However, not 
all languages exhibit all of the characteristics prototypical of a particular class, and so Dauer 
(1987) has argued that there is a continuum from stress-timed to syllable-timed languages.   
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 To address these observations, Ramus et. al. (1999) operationalized Dauer’s hypothesis 
using measurements of vowel and consonant durations in an utterance. Their rationale for this 
approach is attributed to Mehler et. al. (1996), who proposed that infant speech perception relies 
primarily on vowels, partly because consonants tend to have less acoustic energy. Ramus et. al. 
(1999) used three measures derived from interval durations: %V, the proportion of the duration 
of a passage taken up by vowels, and ΔC and ΔV, the standard deviations of the durations of 
consonantal and vocalic stretches in running speech. With these parameters they were able to 
distinguish syllable and stress-timed languages: stress-timed languages tend to have relatively 
high ΔC and ΔV, and low %V, reflecting the observation that vowels sometimes reduce and 
syllable shapes are more diverse in these languages. In contrast, syllable-timed languages tend to 
have relatively low ΔC and high %V, reflecting a more limited set of syllables and less 
reduction. Japanese has an even lower ΔC and %V—perhaps indicating a third moraic-timing 
cluster. 
 Despite the success of this approach, the question remains as to whether the phonological 
properties of languages are what give rise to the percept of rhythm, or are merely epiphenomena 
of something else perceptible in the speech signal. This “something else” may not even be 
detectable with interval durations. Before we describe a methodology that is designed to 
overcome the limitations of interval-duration approaches, a few more issues should be pointed 
out here. 
 There may be a fundamental problem with the idea that syllable-timing or stress-timing is 
a property of a language, rather than of a particular utterance. If it can be shown that some 
utterances in a given language are more syllable-timed and others are more stress-timed, then 
perhaps the appropriateness of the cross-linguistic classification needs further reexamination. To 
show this, what is needed is a way of characterizing rhythm that does not rely on statistics of 
interval durations. 
 An even deeper problem with the stress/syllable/mora-timing trichotomy is that these so-
called prosodic units may not be primitives with respect to speech rhythm. It is conceivable that 
the groups of speech gestures affiliated with a mora or a syllable or a stressed syllable (i.e. “head 
of a foot”) may sometimes pattern abnormally and adopt timescales characteristic of the other 
units. For example, (phonologically/lexically) “unstressed” syllables may sometimes act more 
like stressed syllables, which in turn might sometimes pattern like morae. That is, rhythmic 
patterns might be dissociable from the prosodic units that are traditionally used to structure 
speech into hierarchical representations. 
 
2. Method 
 
2.1 Low-frequency spectral analysis 
 
 To understand how our method differs from interval duration methods, let’s begin by 
considering all of the information about the speech signal that interval duration measurements 
ignore. Such measures represent the interval between two points in time with a single number, its 
duration. This effectively eliminates from the numeric representation of the signal all details 
about its amplitude envelope. From a naïve perspective, this seems like an egregious omission of 
detail, yet this dissociation of interval duration from the contents of an interval is so common 
that it is almost never explicitly noted in methodological appraisals. 
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 The reason that such neglect is so widespread may be related to the very basic metaphors 
that structure the most popular linguistic theories. Consider a CVCV foot like [sasa], in which 
the intersyllabic interval (i.e. the duration between syllable onsets) is very clearly defined. 
Assume that the measurement of such an interval involves negligible error (approx. < 10ms). Our 
theoretical construct of the SYLLABLE, i.e. σ,  encourages us to think of this period of time as a 
container. By metaphoric extension, this container can be empty (or at least its contents 
irrelevant), in which case the most pertinent information about the container is its size—the 
duration of the syllable. The prevalence of this conceptual metaphor, along with the ease with 
which such durations can be measured, encourages us to ignore the contents of the container. 
The same metaphor structures our understanding of interstress intervals, i.e. feet, which are 
understood to contain syllable containers. 

The approach in this paper is to give much less attention to where intervals begin and 
end, and more attention to the acoustic contents of those intervals. We do this by analyzing the 
frequency spectrum of the slowly undulating amplitude envelope of speech. Consider now the 
segmented speech waveform in Fig. 1, where the citation form, phonetic transcription, and 
deletions are shown in tiers below. This utterance is about 2.3 s in duration, and contains 14 
syllables. 

 

 
Fig. 1. Acoustic waveform and segmentation of a 2.3 s utterance from the VIC corpus. 
 

 One of the first things to notice about the speech signal is that in the long term, its 
integrated amplitude tends to zero (assuming a decent microphone), since the negative and 
positive pressure variations for voiced speech cancel each other out on small timescales. It is the 
magnitude (absolute value) of those variations that we are really interested in, because the 
magnitude varies more slowly and does not cancel itself out when integrated on small or large 
timescales.  
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Fig. 2 below shows the signal from Fig. 1 in panel (a) and its magnitude in panel (c). 
Panel (b) shows the same speech signal after it has been filtered using a 1st-order Butterworth 
filter with a passband of 700-1300 Hz, which is the same filter that Cummins & Port (1998) used 
to detect p-centers. The frequency-response of this filter decreases gradually from the cutoffs, so 
a fair amount of energy outside of the band remains in the signal after the filtering. The 
bandpass-filtered signal reflects primarily vocalic energy, because it filters out glottal energy and 
most of the noise occurring in obstruents, especially sibilant energy. However, it also responds 
better to low and back vowels than high-front vowels with low F1 and high F2; hence the 
bandpass-filtered signal does not represent the energy of all vowels equally. Panel (d) shows the 
magnitude of the bandpass-filtered signal.  
 

 
Fig. 2. Unfiltered (a) and bandpass-filtered (b) acoustic signals, along with corresponding 
magnitudes, (c) and (d). 
 
 To eliminate the rapid amplitude fluctuations of vocal fold vibration, we lowpass filter 
using a 4th-order Butterworth filter with a 10 Hz cutoff. The resulting signal is extremely 
redundant, so we downsample from 16000 Hz to 80 Hz to get rid of some—but not all—of the 
redundancy. This corresponds to an increase in sampling period from 0.0000625 s to 0.0125 s. 
Downsampling eliminates a fair amount of information, but plenty has been retained. Fig. 3(a) 
shows the downsampled lowpass-filtered magnitude (superimposed over the magnitude of the 
bandpass-filtered waveform) after a 45 ms correction has been made for the phase-delays of the 
filters (this correction is the sum of the mean phase delays of the bandpass filter in the 700 to 
1300 Hz range and the lowpass filter in the 0 to 10 Hz range). Fig. 3(b) shows this same 
magnitude over the original waveform, after the magnitude has been windowed (using a Tukey 
window (r = 0.1) and the mean has been subtracted. 
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Fig. 3. Lowpass-filtered magnitude of bandpass-filtered signal superimposed over bandpass-
filtered signal magnitude (a), and superimposed over original acoustic signal (b). 
 
 The low-pass filtered magnitude (or “processed magnitude”) represents slow changes in 
the amplitude envelope of vocalic energy in the original waveform. The last step before the 
spectral analysis is performed is to pad the processed magnitude with zeros and normalize so that 
its variance is unity, as represented in equation (1). 
 

 
 
 Next we apply a Fourier transform (FT) to derive a frequency domain representation 
from the time-domain amplitude envelope signal. The FT preserves all of the same information 
that was contained in the processed magnitude, in the sense that the FT can be inverted to 
reconstruct the original signal. The Fourier transform is based upon the Fourier series (eq. 2), 
which can be used to approximate any real function. 
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Re-expressing (eq. 2) in polar form (eq. 3) gives us a direct representation the phase and 
amplitude of sinusoidal components of the signal.  
 

 
 
 One of the nice aspects of the information expressed by the FT is that it still bears a 
meaningful relation to our intuitive understanding of “rhythm”; arguably, it is even more relevant 
to measuring rhythm than interval durations are. One way to think about why the FT 
representation of the signal provides a good view of rhythm is to see it as the wisdom of the 
crowd. Each otherwise insignificant datapoint within all of the intervals in the entire signal 
contributes to the representation of the signal—as if polling a bunch of people has given us a 
more accurate idea of the overall inclinations across the population. Indeed, in profound contrast 
to the interval-based approaches, here no intervals whatsoever are defined, only frequency 
components with associated phases and amplitudes. 
 Note that the normalization to unit variance imposed upon the time series (eq. 1) is 
retained in the sum of Fourier amplitudes (eq. 4), a fact which follows from Parseval’s Theorem 
(c.f. Chatfield 1975; Jenkins 1968; Anderson 1971). The Fourier Transform thus partitions the 
variance of the time series into components of differing amplitude at each of the Fourier analysis 
frequencies. 
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 The Fourier coefficients still contain far more information than we can use. For starters, 
we will discard information about the phase of each frequency component—not because this 
information is entirely irrelevant to rhythmic analysis, but because we assume that the phases of 
high-energy periodicities nearby in the frequency spectrum cluster together, and hence there is a 
fair degree of redundancy between the phase and amplitude information on local frequency-
scales. The raw power spectrum, or periodogram, (eq. 5; Fig. 4) indicates how much each 
frequency component contributes to the waveform. 
 

 
 

 
Fig. 4. Raw (blue) and smoothed (red) spectrum. L = 31 points. N = 2048. 
 
 The last step in this process is to smooth the power spectrum with bandwidth L, as shown 
by the red line in Fig. 4. Smoothing is accomplished using a moving average filter (eq. 6), and it 
is common to treat the spectrum as symmetric about 0 for this purpose (cf. Chatfield 1975, who 
describes the use of a Daniell filter for this purpose). The redundancy added by smoothing makes 
hypothesis testing easier, because the confidence intervals associated with smoothed spectra are 
narrower, owing to the fact that each smoothed amplitude value represents the average of values 
from a number of nearby frequencies. However, because of the nonlinear relation between 
frequency and period, this form of smoothing introduces greater spectral blurring for 
periodicities corresponding to longer intervals than for ones corresponding to shorter intervals—
hence in some circumstances we will want to analyze the raw (unsmoothed) power spectra. 
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 It is instructive to compare the smoothed spectrum in Fig. 4 to the processed magnitude 
and waveform from Fig. 3(b), repeated in Fig. 5 below. The most dominant peak in the spectrum 
has a frequency of about 3.7 Hz, corresponding to a period of about 270 ms. Looking at just the 
seven highest peaks in the magnitude in Fig. 5, one can see that a number of them are separated 
by around 250-300 ms (3-4 Hz), which accords well with the spectral representation. 
 There are also smaller peaks at 6 Hz (167 ms), 2.2 Hz (450 ms), and 0.5 Hz (2 s). The 
presence of high-amplitude components at these frequencies implies that peaks in the magnitude 
signal should recur approximately at intervals corresponding to those frequencies. Fig. 5 
additionally shows all of the intervals between all peaks in the signal.   
 

 
Fig. 5. Processed magnitude and waveform, along with all interpeak intervals. 
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Fig. 6. Histogram of interpeak interval durations (from Fig. 5) 
 
 Fig. 6 shows a histogram of all the peak-to-peak intervals from Fig. 5. The highest 
concentration of durations is in the bins flanking 200 ms. There are also high concentrations in 
bins flanking 500 ms. These 200 and 500 ms interval duration concentrations are approximately 
what the spectrum predicts (i.e. 6-3.7 Hz ≈ 167-270 ms and 2.2 Hz ≈ 450 ms), but these 
correspondences are inexact because the interval duration approach does not take into account 
the amplitude of the peaks which define each interval. 
 Note that the duration of the signal defines a fundamental frequency—or, to avoid 
confusion, “minimal frequency”—which is the lowest frequency fitting within the signal period. 
Any peaks in the spectrum which occur below twice the minimal frequency of the signal, do not 
in any sense indicate the presence of a periodicity within the signal. Rather, these peaks indicate 
a global imbalance in the distribution of energy in the signal, which can be manifested as 
substantially louder speech in one part of the utterance, a lengthened filler, or various other 
forms of disfluency. In the example above, the signal period is 2.2 s, and so the minimal 
frequency is 0.45 Hz and spectral peaks below 0.9 Hz do not represent true periodicities. 
 
2.2 VIC corpus chunks 
 
 For the current investigation, we are using speech from the Buckeye corpus (Pitt, 
Johnson, Hume, Kiesling, & Raymond 2005), which is a collection of approximately 300,000 
words of conversational speech between interviewers and 40 native central Ohio English 
speakers. Three factors—age of speaker (over 40, under 40), gender of speaker, and gender of 
interviewer—were balanced across the interviews. The corpus was phonetically transcribed and 
segmented by transcribers trained to use acoustic and spectrographic information, following a 
number of conventions to ensure consistency. 

To analyze the corpus, we first extract “chunks” of speech with no interruption or non-
speech vocalization. In addition, the extraction procedure can separate chunks by all silences, or 
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a silence duration parameter can be set so that only silences greater than some duration cause 
chunks to be separated. There are a number of basic variables that are associated with each 
chunk, these include the duration of the chunk, the number of syllables (here considered 
equivalent to the number of vowels and syllabic consonants), the number of non-syllabic 
consonants, and the rate of syllables per second. Additionally, because the corpus is 
phonetically-segmented, it is possible to infer when segmental deletions and alternations have 
occurred, by comparing the citation form of a word to its phonetic transcription. Figs. 7-9 show 
the distributions of some of the basic chunk variables for raw chunks extracted from the corpus. 
Note that the mean rate of syllables per second is approximately 5 σ/s. Table 1 shows 
correlations between these basic chunk variables. As one might expect, the number of syllables 
in a chunk and its duration are highly correlated, and there is also a fair degree of correlation 
between rate and syllable count. Furthermore,  there is some correlation between rate and chunk 
duration, which reflects the observation that very short chunks are likely to consist entirely of 
hesitations, fillers, or pitch-accented one-word utterances. 
 

Fig. 7. Chunk durations 
 

 
Fig. 8. Syllable counts 
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Fig. 9. Chunk rates (σ/s) 

 

Table 1. Chunk variable 
correlations (entire corpus) 

 Duration Rate (σ/s) 
σ - count 0.945 0.298 
Duration  0.097 

 
 Not unexpectedly, the duration of a chunk tends to have a substantial effect on its spectral 
profile. Fig. 10 shows average raw power spectra and average smoothed power spectra for 1-2 s, 
2-3 s, 3-5 s, and 5-7 s chunks. At low frequencies (below 1 Hz), a sizeable relation between 
chunk duration and spectral amplitude is apparent. This is due to the fact that longer chunks 
allow for lower frequency periodicities. At higher frequencies (above 2 Hz), the 2-3, 3-5, and 5-7 
s chunk spectra pattern together, tending to have less energy than the 1-2 s chunks. This 
asymmetry may be due to changes in speech rate being more common in longer stretches of 
speech, or may arise because the Fourier transform partitions a greater proportion of variability 
into lower frequencies for longer chunks. Note that due to its smaller sample size, the average 
power spectrum of 5-7 s chunks is fairly noisy. 
 
(a) 
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(b) 

Fig. 10. Average spectra (a) and averaged smoothed spectra (b) for different chunk sizes. 
 
 Because expected spectral profile is influenced by chunk duration, relations between 
chunk spectra and other variables cannot be directly evaluated without first taking measures to 
reduce the impact of chunk duration on those other variables. A simple way of accomplishing 
this is to analyze a subset of chunks that fall within a predetermined range of durations. In 
general, the choice of subset duration range depends upon the timescales of the rhythms being 
investigated. If one is interested in foot or syllable timescales, shorter chunk durations are more 
appropriate, because over longer durations speech rate and rhythm are more variable. Hence in 
the range of frequencies corresponding to foot and syllable timescales (approximately 1.5-6 Hz), 
spectra derived from longer chunks are less informative. If one is interested in phrasal 
timescales, longer chunk durations are more appropriate. 
 Rather than leaving unanalyzed the raw chunks whose durations are greater than the 
upper bound of a given duration range, we divide these chunks into subchunks. For illustrative 
purposes in this paper, we chose a chunk duration range of τ = (τ1, τ2) = (2, 3) s, because we 
suspect that this range is useful for studying syllable- and foot-timed rhythms. The number of 
subchunks that can be obtained from a raw chunk of duration T > τ2 seconds is floor(T – λ), 
where λ represents a target overlap between successive chunks. If λ = 1, two chunks can be 
obtained from a 3.75 s chunk, and three from a 4.12 s chunk, etc. The target duration of each 
chunk is (τ1+ τ2)/2, but we apply a random perturbation (from -0.5 to 0.5 s) to the target 
subchunk endpoint in order to make the overall distribution of durations more uniform. The 
actual resized-chunk durations are determined by the segment boundaries nearest to the target 
startpoint and randomly perturbed target endpoint. Figs. 11-13 below show the distribution of 
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chunk durations, syllable counts, and syllable rates in the 2-3 s subset. The average chunk rate is 
about 5.5 σ/s, and the average number of syllables per chunk is between 12 and 13. 
 

Fig. 11. Histogram of 2-3 s chunk durations 
 

 
Fig. 12. 2-3 s chunk syllable count frequency  

Fig. 13. 2-3 s chunk rates 

 

Table 3. Chunk variable 
correlations (2-3 s subset) 

 Duration Rate (σ/s) 
σ - count 0.501 0.873 
Duration  0.027 

Table 2. Chunk variable 
correlations (entire corpus) 

 Duration Rate (σ/s) 
σ - count 0.945 0.298 
Duration  0.097 

 
 Correlations between basic chunk variables for the entire subset are repeated in Table 2, 
and those for the 2-3 s chunk subset are shown in Table 3. Notably, the correlation between 
duration and syllables is diminished in the subset, while the syllable count-rate correlation is 
greatly increased. Most importantly, the duration-rate correlation is reduced, making the duration 
of a chunk a less significant factor on the chunk rate. This allows for more reasonable 
comparison of slow-speech and fast-speech spectra.  
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3. Analysis 
 
 In this section, we present example chunks and spectra from the 2-3 s subset, provide 
descriptive statistics characterizating spectral variance in these chunks, and then discuss 
techniques for analyzing the low-frequency spectral information. We do not analyze data for the 
sake of making an argument here; rather, we illustrate a variety of issues that arise in the analysis 
of spectral information.  
 
3.1 Examples 
 
 Figs. 14-18 below show examples of 2-3 s chunks that are highly periodic relative to the 
mean spectrum for 2-3 s chunks. The top panel in each of the following figures shows the 
waveform and processed magnitude, along with citation, transcription, and deletions. (In the 
original electronic copy of this paper, sound files are linked to the figure so the reader can listen 
to the examples). The middle panel shows the smoothed spectrum against the mean and 2.5 
standard deviation region for the entire subset of 2-3 s chunks. The bottom panel shows the 
average amplitude across each of nine frequency bands, against the mean and 2.5 standard 
deviation interval for the subset in each band. These frequency bands can be seen as a further 
reduction of dimensionality in the description of the chunk spectrum, but no principled reason 
choosing these specific ranges has been determined. Figs. 14-17 show chunks with high 
periodicity in the 1-2 Hz, 2-3 Hz, 3-4 Hz, and 4-5 Hz ranges, respectively. Fig. 18 shows a chunk 
without a periodicity exceeding 1 standard deviation in any of the energy bands. 
 

 
Fig. 14. High-amplitude periodicity in the 1-2 Hz band. 
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Fig. 15. High-amplitude periodicity in the 2-3 Hz band. 
 

 
Fig. 16. High-amplitude periodicity in the 3-4 Hz band. 
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Fig. 17. High-amplitude periodicity in the 4-5 Hz band. 
 

 
Fig. 18. No periodicity exceeding 1 standard deviation in any energy band.  
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3.2 Spectral variability 
 
 One of the first questions that arises in considering spectral data is how often high-
amplitude periodicities occur in a chunk. The flip-side of that question is how often no high-
amplitude periodicities occur at all. This question can be answered by counting the number of 
chunks with spectral peaks exceeding a power threshold. Table 4 shows the percentages of 
chunks with an spectral amplitude value exceeding 30 amplitude units, which can be seen to be 
indicative of a rhythmic component in the examples shown above. These data indicate that the 
presence of high-amplitude periodicity in speech is more prevalent than one might have thought: 
approximately 16.5% of chunks have a >1 Hz high-energy periodicity. 
 
Table 4: Frequency of rhythmic chunks 
 0-1 Hz 1-2 Hz 2-3 Hz 3-4 Hz 4-5 Hz 5-6 Hz Total (> 1 Hz) 
count (%) of 
rhythmic 
chunks 

1163 
(11.7%) 

765 
(7.7%) 

582 
(2.3%) 

229 
(0.5%) 

53 
(<0.1%)

6 
(<0.1%) 

1635 
(16.5%) 

 
 We note here that the frequency bands chosen for the above presentation are the same as 
the ones shown in the examples in the preceding section. The ranges of these bands are mostly 
arbitrary, and in future analyses a priori principles for choosing particular band ranges may be 
discovered. The band ranges chosen above give equal import to periodicities in the 1-2 Hz range 
and the 8-9 Hz range—this is probably not the most sensible choice, since the spectral peaks of 
chunks are not uniformly distributed throughout this range. 
 A nice way to visualize the variability of chunk spectra is to examine the distributions of 
frequency peaks and their amplitudes. For each amplitude envelope spectrum, we can locate the 
highest peak—perhaps within a certain range of frequencies—and plot that value against its 
amplitude. We define the peak as the highest local maximum of the spectrum which has lower 
amplitude neighbors, rather than as the global maximum of the spectrum, because some 
smoothed spectra have their global maximum located at 0 Hz (which is an artifact of the spectral 
smoothing procedure, not a direct current component of the signal). Fig. 19 (a), shows a 2-
dimensional Gaussian kernel density plot of peak frequencies and their corresponding amplitudes 
from all the 2-3 s chunks. Fig. 19 (b) shows a similar density plot, where only peaks representing 
true periodicities (i.e. peaks above twice the minimal frequency of a chunk) were chosen. Fig. 19 
(b) indicates that the dominant periodicity of a 2-3 s chunk in the VIC corpus tends to fall in the 
range of 1.5-3.5 Hz. Further, there appear to be two subclusters, one centered around 
approximately 1.5 Hz (666 ms) and another around 2.5 Hz (400 ms). 
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(a) (b) 

Fig. 19. Frequency peak-amplitude densities (a,b). 
 
 Note that the Gaussian kernel density bandwidths and the ranges in which the densities 
are calculated and plotted affect how the density plots appear. For all the density figures in this 
report, we have used a frequency kernel bandwidth of 0.2 Hz, which means that each point in the 
density plot represents the Gaussian integration of peaks within +/- 0.2 Hz. We used an 
amplitude range from the 0.1 percentile to the 99.9 percentile of amplitude values, and an 
amplitude kernel bandwidth of 5% of the amplitude range. We have also included 90%, 50%, 
and 25% density contours (white lines) in each plot. 
 A second point to be made about the procedure for obtaining peak frequency-amplitude 
densities is that the peak-detection process is inherently biased to select peaks at low frequencies 
over ones at higher frequencies. This is simply because the low-frequency rhythms in chunks 
correspond to stressed syllables and accents, and hence have greater energy in the processed 
magnitude. These low-frequency rhythms then receive more of the variability in the partitioning 
effected by the Fourier transform, and thus the low-frequency peaks tend to be higher in 
amplitude. This makes higher frequency peaks less likely to be selected by the peak-picking 
algorithm. One way to remove this bias is to normalize each spectrum according to the average 
spectrum of some set of data. In the current examples, we normalize by the mean and standard 
deviation spectra of the entire 2-3 s chunk subset. The normalization procedure is analogous to 
calculating a z-score for each point in the spectrum, and it removes the low-frequency bias in the 
spectrum. What is left is an indication of where in the spectrum the most outlying peaks—
relative to the entire dataset—are found, as well as how outlying those peaks are. 
 Fig. 20 below shows frequency-amplitude densities for 2-3 s chunks, using normalized 
spectra. Panels (a) and (b) show normalized peak densities when peaks are drawn from the full 
range of the spectrum and from frequencies above twice the fundamental, respectively. Panels 
(c) and (d) show the corresponding z-scores. Note that regions of apparently high-density in the 
upper end of the amplitude plots do not correspond to high-density regions in the z-score plots; 
this disparity occurs because the amplitude values are more compressed in the upper end of the 
spectrum but the kernel density estimation procedure treats frequency and amplitude as linear. 
We therefore recommend using z-score plots to interpret normalized peak densities. Note that the 
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same problem applies to non-normalized density plots, but on account of spectral bias, these tend 
not to have as many peaks in the upper end of the spectrum. 
 
(a) (b) 

(c) (d) 

Fig. 20. Frequency peak-amplitude densities obtained from normalized spectra. (a) and (c) show 
peaks in the 0-9 Hz range, (b) and (d) peaks above twice the minimal frequency of the chunk. (a) 
and (b) show amplitudes, (c) and (d) the z-scores used detect the highest peak. 
 
 What Fig. 20 (d) indicates is that when smoothed spectra are normalized to account for 
spectral bias, the majority of outlying peaks tend be located between 1 and 3 Hz. Yet peaks in the 
range of 3 to 5 Hz become much more noticeable with the normalized peak-detection algorithm. 
Peaks in the 4-5 Hz range are especially intriguing if one interprets this range to be associated 
with syllable-timing. Assuming English is stress-timed, one would expect—and indeed this is 
borne out in the figures above—that peaks in the 2-3 Hz range would dominate the others, 
because this range presumably contains the average interstress interval in English. Yet the 
presence of chunks in which a 4 Hz periodicity is strong suggests that on occasion, English 
rhythm patterns more like that of a syllable-timed language.  
 The presence of faster rhythms in English suggests a dual-mode hypothesis: speakers can 
make use of both stress-timing and syllable-timing, but for any given language, one pattern will 
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be more dominant. To rigorously test this hypothesis, one would need to identify a number of 
English utterances which exhibit high periodicity at syllable-associated frequencies and show 
that these differ in certain ways from utterances without high-periodicity at those frequencies. 
One potential difference should be a relative diminution of the cues that are normally associated 
with stress, e.g. greater duration of stressed syllables, more peripheral vowel qualities, greater 
intensities, and larger pitch excursions. 

While all of the peak densities shown above were derived from smoothed power spectra, 
it is equally practical to take peaks from raw power spectra. Fig. 21 (a) and (b) show raw and 
smoothed peak-amplitude densities. Note the difference in scales. Panels (c) and (d) show the 
corresponding normalized densities. Because the spectral blurring introduced by smoothing is 
more problematic for lower frequencies, the use of raw spectra for peak density may be more 
appropriate for analysis of the low end of the spectrum. Note also that the raw spectra do not 
suffer from edge effects at 0 Hz, because the raw spectra always have 0 amplitude at 0 Hz 
(owing to the subtraction of the mean from the processed magnitude signal). 
 
(a) 

 

(b) 

(c) (d) 

Fig. 21. Peak-density plots from raw spectra (a) and smoothed spectra (b), along with 
corresponding normalized peak-density plots (c) and (d). 
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The peak detection algorithm used to produce the above figures takes only the highest 

true peak from each spectrum and ignores any other peaks. The algorithm thereby discards 
potentially useful information about less energetic rhythms in a chunk. To rectify this we can 
select an arbitrary number of peaks from each spectrum and include all of them in the density 
plot. In practice, it does not make much sense to select more than the 3 or 4 highest peaks from 
each spectrum, since lower-amplitude peaks are not very representative of signal periodicities. 
Fig. 22 shows smoothed spectrum peak-densities and their normalized peak-density counterparts,  
where increasing numbers of peaks have been drawn from each spectrum. One can see that as 
more peaks are taken, a greater number of peaks in the 5-8 Hz range are selected, but relatively 
more are also taken from the 1 Hz range, which leads to obfuscation of the 2-3 Hz mode visible 
in (a). The normalized peak-amplitude densities confirm this: as more peaks are taken from each 
spectrum, the density in higher frequencies is diminished relative to the density in the lower end 
of the spectrum.    
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(a) 1 peak 

 

(b) 1 peak 

 
(c) 2 peaks 

 

(d) 2 peaks 

 
(e) 3 peaks (f) 3 peaks 

 
(g) 4 peaks (h) 4 peaks 

Fig. 22. Multiple-peak density plots (left) and corresponding z-score density plots (right). 
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 Peak-amplitude density plots also offer a useful way of uncovering differences between 
datasets. Consider subsets of 2-3 s chunks in which speech rate (syllables per second) is greater 
than and less than the mean speech rate. Fig. 23 (a) shows the density difference between these 
fast- and slow-speech subsets, where two peaks have been drawn from each spectrum. To 
compute the difference, both density matrices are normalized to sum to the same value, and then 
one is subtracted from the other. In this case, the blue region is where the proportion of peaks 
taken from slow speech is substantially greater than the proportion taken from fast speech. The 
red regions are where the proportion of fast-speech peaks is greater than the proportion of slow-
speech peaks. As one might expect, slow speech exhibits a predominance of peaks at the lower 
end of the spectrum, while faster speech has lower amplitude low-frequency peaks, and of course 
high-frequency peaks. The normalized peak-amplitude density difference (b) shows the same 
pattern, except that there is no concentration of fast speech density at the low end of the 
spectrum; this implies that the fast-speech low-frequency peaks visible in (a) were selected due 
to spectral bias. 
 
(a) (b) 

Fig. 23. Non-normalized peak-amplitude (a) and normalized peak-amplitude (b) density 
difference plots (2 peaks per spectrum) showing differences between fast and slow speech. 
 
 One promising use of density difference plots is to uncover rhythmic differences between 
speech with and without deletion. Fig. 24 shows peak-density and normalized peak-density 
difference plots between subsets of data consisting of chunks that did or did not have consonant 
or vowel deletions, where rate has been controlled by excluding chunks beyond 1 standard 
deviation from the mean rate of the entire dataset. These figures show that consonant deletion is 
associated with rhythms around 2 Hz, but rhythms around 2.5 Hz are associated with consonantal 
preservation. In contrast, vowel deletions are strongly associated with 2.5-3 Hz rhythms, while 
vowel preservation is associated with 1 Hz and 5-6 Hz rhythms.  
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Fig. 24. Peak-amplitude (left) and normalized peak-amplitude (right) density difference plots (2 
peaks per spectrum) showing differences between spectra of chunks with and without consonant 
(top row) and vowel (bottom row) deletions. 
  
 One interpretation of these results is that 1 Hz and 5-6 Hz rhythms are associated with 
disfluency/phrasal-accents and syllable-timing, respectively. Phrasal accents and disfluency tend 
to slow speech, making vowel deletion less likely. Syllable-timing involves a periodicity that 
governs both stressed and unstressed syllables; this periodicity makes the vocalic gestures 
associated with unstressed syllables more stable and less prone to deletion. Further, we might 
divide metrical foot-timing into slow and fast varieties: slow (1.75-2.5 Hz) foot-timing preserves 
vocalic gestures but provokes consonantal deletion, while fast (2.5-3 Hz) foot-timing makes 
unstressed vowels prone to deletion but preserves consonants. Intriguingly, consonants are 
preserved in fast foot-timing, but prone to deletion in 4 Hz rhythms. Explaining why these 
patterns are observed requires a theory of rhythmic-gestural interaction that remains to be 
developed; but, in general terms, such a theory may involve dynamic coupling between metrical 
and gestural systems.  
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4. Conclusion and Future Directions 
 
 This report has presented a method for the quantitative analysis of rhythm that does not 
utilize interval durations, but rather, uses spectral analysis of lowpass-filtered magnitude signals. 
We believe this technique has the potential to augment studies of speech rhythm in a variety of 
ways. It offers an new approach to cross-linguistic rhythmic typology that involves statistical 
comparisons between large corpora of conversational speech. It can offer insights into rhythmic 
styles and characterizations of fluency from sociolinguistic and clinical perspectives. It may also 
shed light on relations between speech rhythm and intergestural timing, providing a deeper 
understanding of variation in conversational speech. 
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